Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-4186317.v1

ABSTRACT

Immune imprinting or original antigenic sin (OAS) originally referred to a phenomenon of suboptimal immune response to a repeat exposure to a virus that was antigenically distinct from the original virus infection. OAS has been implicated in higher mortality in young people during the 2009-10 H1N1 pandemic where the elderly (H1N1 exposure in childhood) appeared relatively well protected compared to younger individuals whose first influenza infection was not H1N1. Immune imprinting is part of a rapid recall system and is highly effective against a slowly evolving virus (drifting) but not antigenically shifting viruses such as influenza and SARS CoV-2. As predicted by OAS, suboptimal neutralization responses to the highly divergent SARS-COV-2 lineage Omicron have been observed in animal models and individuals previously vaccinated with primary course of ancestral (Wu-1) vaccine. Due to the rapid scale up of vaccine before emergence of the antigenically distinct Omicron variant, it is unknown whether immunological imprinting for occurs in the context of SARS-COV-2 infection itself. We longitudinally assessed humoral responses to primary two dose Ad26.COV2.S Wu-hu-1 based vaccination in a Nigerian population following the global emergence of Omicron. At study entry in Jan 2023, we found 93% and 58% of pre-vaccination participants previously exposed to ancestral Wu-1 and Omicron virus respectively by anti-N IgG and anti-receptor binding domain (RBD) IgG Wu-1 and Omicron -specific antibodies. In participants with no evidence of prior exposure to Omicron, neutralisation against Wu-1 was significantly higher than Omicron variants as expected. However, serum neutralisation titres in participants who were anti-RBD Omicron IgG positive were paradoxically 2-fold lower for Omicron BA.1 as compared to Wu-1. This is clear evidence for imprinted immunity from the ancestral pre-omicron lineage viruses, and remarkably these old responses to Wu-1 were able to dominate over more recent, likely multiple, Omicron lineage infections. Furthermore, in these participants with prior exposure to Omicron and evidence of imprinting, we observed that further Omicron infection and Wu-1 based vaccine was associated with boosting of responses across variants with equalisation of neutralisation titres for Wu-1 and Omicron variants. However, omicron responses did not surpass ancestral responses, suggesting persistence of imprinting and only partial mitigation. Although neutralization responses at high titres were observed post dose 1 vaccination against ancestral and Omicron variants BA.1, BA.2, BA.4 in nearly all participants, neutralisation against the highly immune evasive XBB recombinant variant remained substantially lower, with a second vaccine dose providing very modest boosting. These data highlight immune imprinting against SARS-CoV-2 prior to vaccination and its persistence thereafter. In present day unvaccinated populations where serum neutralisation responses to pre-Omicron variants dominate, use of an omicron variant based vaccine should be used in preference to Wu-1 based vaccine to override imprinting and provide broader protection for vulnerable populations such as the elderly or those with compromised immunity.


Subject(s)
Tumor Virus Infections , COVID-19 , Influenza, Human
2.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2653179.v1

ABSTRACT

Vaccine protection against COVID-19 wanes over time and has been impacted by the emergence of new variants with increasing escape of neutralization. The COVID-19 Variant Immunologic Landscape (COVAIL) randomized clinical trial (clinicaltrials.gov NCT 05289037) compares the breadth, magnitude and durability of antibody responses induced by a second COVID-19 vaccine boost with mRNA (Moderna mRNA-1273 and Pfizer-BioNTech BNT162b2), or adjuvanted recombinant protein (Sanofi CoV2 preS DTM-AS03) monovalent or bivalent vaccine candidates targeting ancestral and variant SARS-CoV-2 spike antigens (Beta, Delta and Omicron BA.1). We found that boosting with a variant strain is not associated with loss in neutralization against the ancestral strain. However, while variant vaccines compared to the prototype/wildtype vaccines demonstrated higher neutralizing activity against Omicron BA.1 and BA.4/5 subvariants for up to 3 months after vaccination, neutralizing activity was lower for more recent Omicron subvariants. Our study, incorporating both antigenic distances and serologic landscapes, can provide a framework for objectively guiding decisions for future vaccine updates.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.10.22274906

ABSTRACT

Background: Several studies have shown that SARS-CoV-2 BA.1 omicron is an immune escape variant and current vaccines and infection with pre-omicron variants provide limited protection against BA.1. Meanwhile, however, omicron BA.2 has become the dominant variant in many countries and has replaced BA.1. As BA.2 has several mutations especially in the receptor binding and the N terminal domain compared to BA.1, we analyzed whether BA.2 shows further immune escape relative to BA.1. Methods: We characterized neutralization profiles against the new BA.2 omicron variant in plasma samples from a variety of individuals with different numbers of exposures to infection/vaccination, including samples from previously virus-naive, BA.2 omicron-infected individuals. To illustrate antigenic differences of the two omicron sub-variants and pre-omicron variants we performed antigenic cartography and generated antibody landscapes. Results: Unvaccinated individuals after a single exposure to BA.2 had limited cross-neutralizing antibodies to pre-omicron variants and to BA.1. Consequently, our antigenic map, which included all Variants of Concern and both BA.1 and BA.2 omicron sub-variants, showed that both omicron sub-variants are distinct to pre-omicron variants, but that the two omicron variant are also antigenically distinct from each other. The antibody landscapes illustrate that cross-neutralizing antibodies against the whole antigenic space, as described in our maps, are generated only after three or more exposures to antigenically close variants but also after two exposures to antigenically distinct variants. Conclusions: Here, we describe the antigenic space inhabited by the relevant SARS-CoV-2 variants, the understanding of which will have important implications for further vaccine strain adaptations.

4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.25.457693

ABSTRACT

SUMMARY Although mRNA vaccines prevent COVID-19, variants jeopardize their efficacy as immunity wanes. Here, we assessed the immunogenicity and protective activity of historical (mRNA-1273, designed for Wuhan-1 spike) or modified (mRNA-1273.351, designed for B.1.351 spike) preclinical Moderna mRNA vaccines in 129S2 and K18-hACE2 mice. Immunization with high or low dose formulations of mRNA vaccines induced neutralizing antibodies in serum against ancestral SARS-CoV-2 and several variants, although levels were lower particularly against the B.1.617.2 (Delta) virus. Protection against weight loss and lung pathology was observed with all high-dose vaccines against all viruses. Nonetheless, low-dose formulations of the vaccines, which produced lower magnitude antibody and T cell responses, and serve as a possible model for waning immunity, showed breakthrough lung infection and pneumonia with B.1.617.2. Thus, as levels of immunity induced by mRNA vaccines decline, breakthrough infection and disease likely will occur with some SARS-CoV-2 variants, suggesting a need for additional booster regimens.


Subject(s)
Pneumonia , Breakthrough Pain , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL